Homework III (due: 04/08/2015) CIS 5636 Ad Hoc Networks

Name -

-- Student Number -

1. Concept

(Ref: J. Carle and D. Simplot-Ryl, IEEE Computer 2005.)

- Explain the similarities and differences between *trust* and *reputation*. Use one or two examples to illustrate.
- Discuss the similarities and differences between area coverage and point coverage.

2. Utility-based routing

(Ref: M. Lu and J. Wu, Social Welfare Based Routing in Ad Hoc Networks, ICPP 2006.)

Given a network of four nodes: S, 1, 2, and D. The corresponding links with the associated cost/reliability values are the following: (S, 1) : 1/05, (1, D) : 7/09, (1, 2) : 2/0.6, (S, 2) : 4/0.8, and (2, D) : 3/0.7.

- Find all paths from S to D.
- Determine the most (and least) reliable path from S to D.
- Determine the most (and least) costly path from S to D.
- Determine the highest (and lowest) utility path from S to D if the benefit value of the packet is 20.

3. Coverage and Exposure Problems

(Ref: S. Meguerdichian, Coverage Problem in Wireless Ad-Hoc Sensor Networks, INFOCOM 2001.)

Given four points, (1, 1), (3, 5), (5, 2), and (4, 4), in a square region with four corners (0, 0), (0, 6), (6, 0), and (6, 6).

- Find the Voronoi diagram.
- Find the corresponding Delaunay triangulation.
- Determine the maximal breach path from (0,0) to (6,6).
- Determine the maximal support path from (0,0) to (6,6).

4. Clusterhead

Write a C or Java code and show two running results of LEACH on a sensor network with 50 nodes with p = 0.1 (i.e., there are average 5 sensors selected as clusterheads in each round). Each run includes 25 rounds. Show both code and running results (clusterhead sequences).

5. Subjective Logic

Suppose Beta distribution is used in the Bayesian inference. From A to B (and from B to C), we have $\alpha = 10$ and $\beta = 10$ (and $\alpha = 20$ and $\beta = 20$).

- Find out the corresponding belief (b), disbelief (d), and uncertainty (u).
- Derive indirect opinion of A on C, through A on B, and B on C.